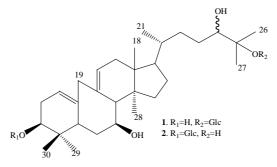
Two New 9, 10-seco-Cycloartanes from the Seeds of Sphaerophysa salsula

Zhong Jun MA¹, Isao FUJII², Yutaka EBIZUKA², Xian LI¹*


¹Department of Natural Medicines, Shenyang Pharmaceutical University, Shenyang 110016 ²Graduate School of Pharmaceutical Science, the University of Tokyo, Tokyo 113-0033, Japan

Abstract: Two novel compounds, named sphaerophyside SC and SD were isolated from the ethanolic extract of the seeds of *Sphaerophysa salsula*. The structures of the compounds were elucidated on the basis of the NMR data, especially the 2D NMR technique.

Keywords: Leguminosae, Sphaerophysa salsula, seeds, 9, 10-seco-cycloartane.

Sphaerophysa salsula (Pall.) DC is widely distributed in the Middle-Asian and the northwest of China. It was used as a folk medicine to treat hypertension in China. We previously reported the isoflavans¹, stilbenes² and 9, 19-cycloartane³ from *S. salsula*. In our extended research, we isolated two new 9, 10-*seco*-cycloartanes from the seeds of the plant. This paper describes the isolation and structural elucidation of the compounds.

Figure 1 Sphaerophyside SC (1) and SD (2)

Sphaerophyside SC (1, 6 mg), white powder from MeOH. Its molecular formula $C_{36}H_{60}O_9$ was determined on the basis of HRFABMS ([M+H]⁺, *m/z* 637.4320, calcd. 637.4326) and ¹³C NMR. After hydrolysis with 0.5 mol/L HCl, 1 afforded glucose, which was identified by TLC with authentic sample. In the ¹H NMR spectra of 1, it presented 6 tertiary methyls [δ 0.73 (s, 3H, H-18), 1.24 (s, 3H, H-26), 1.21 (s, 3H, H-27), 0.92 (s, 3H, H-28), 1.02 (s, 3H, H-29), and δ 0.69 (s, 3H, H-30)] and one secondary methyl at δ 0.92 (d, 1H, J=7.5 Hz, H-21). Two olefinic protons were showed at δ 5.27

^{*} E-mail: lixian@mail.sy.ln.cn or chinamzj@yahoo.com

Zhong Jun MA et al.

Ν	1 (δ _H)	2 (δ _H)	1	2 (b _C)
1	5.27 (br.s, 1H)	5.27 (br.s, 1H)	117.6	118.1
2	1.70 (m, 1H), 2.19 (m, 1H)	2.06 (m, 1H), 2.45 (m, 1H)	32.6	32.3
3	3.39 (dd, 1H, 9.5, 3.0)	3.43 (dd, 1H, 9.5, 6.0)	79.5	85.6
4			38.8	38.9
5	1.66 (m, 1H)	1.76 (m, 1H)	46.1	46.4
6	1.90 (m, 2H)	1.94, 1.81 (m, 2H)	36.8	37.0
7	3.80 (m, 1H)	3.80 (m, 1H)	74.9	74.8
8	2.14 (m, 1H)	2.15 (m, 1H)	55.9	55.8
9			139.3	137.5
10			140.6	140.0
11	5.36 (br. s, 1H)	5.35 (br. s, 1H)	126.6	126.3
12	2.08 (m, 1H), 1.95 (m, 1H)	2.03 (m, 1H), 1.97 (m, 1H)	38.5	38.5
13			46.7	46.7
14			49.3	49.4
15	1.52 (br.t, 2H, 10.0)	1.74 (m, 2H)	36.2	36.2
16	1.56 (m, 2H)	1.91 (m, 2H)	29.3	29.3
17	1.62 (m, 1H)	1.62 (m, 1H)	52.0	52.0
18	0.73 (s, 3H)	0.73 (s, 3H)	15.3	15.3
19	2.75, 3.02 (d, 1H, 14.0)	2.73, 3.01 (d, 1H, 14.0)	45.8	45.8
20	1.40 (m, 1H)	1.38 (m, 1H)	35.0	35.0
21	0.92 (d, 3H, 7.5)	0.93 (d, 3H, 7.0)	19.2	19.2
22	1.89 (m, 2H)	1.89 (m, 2H)	37.9	37.9
23	1.95 (m, 2H)	1.51, 1.20 (m, 2H)	29.3	29.1
24	3.36 (t , 1H, 9.0)	3.15 (overlapped, 1H)	75.5	80.6
25			81.9	73.9
26	1.24 (s, 3H)	1.12 (s, 3H)	21.3	24.7
27	1.21 (s, 3H)	1.16 (s, 3H)	23.8	25.8
28	0.92 (s, 3H)	0.92 (s, 3H)	19.5	19.4
29	1.02 (s, 3H)	1.11 (s, 3H)	24.9	25.0
30	0.69 (s, 3H)	0.79 (s, 3H)	13.4	14.8
1′	4.61 (d ,1H, 8.0)	4.30 (d, 1H, 8.0)	98.6	106.2
2'	3.16 (br. d, 1H, 8.0)	3.17 (overlapped, 1H)	75.2	75.6
3'	3.34 (m, 1H)	3.35 (m, 1H)	78.1	78.2
4′	3.30 (m, 1H)	3.27 (m, 1H)	71.6	71.7
5'	3.31 (m, 1H)	3.29 (m, 1H)	77.7	77.7
6′	3.64 (dd, 1H, 6.0, 12.5), 3.81 (m, 1H)	3.64 (dd, 1H, 5.5, 11.5), 3.82 (m, 1H)	62.6	62.8

Table 1 NMR data of **1** and **2** (in CD₃OD, 1 H 500.0 MHz, 13 C 125.0 MHz, δ ppm, J_{Hz})

(br.s,1H, H-1) and δ 5.36 (br.s, 1H, H-11). It also exhibited an anomeric proton at δ 4.61 (d, 1H, J=8.0 Hz, H-1'), so the configuration of the glucose is β . Three oxygen substituted methine protons were observed at δ 3.39 (dd, 1H, J=9.5, 3.0 Hz, H-3), 3.80 (m, 1H, H-7) and δ 3.36 (t, 1H, J=9.0 Hz, H-24). The ¹H NMR spectrum also revealed a pair of doublets at δ 2.75 and δ 3.02 (d, each 1H, J=14.0, H-19). In the ¹³C NMR and DEPT (90°, 135°) of **1**, it revealed 36 carbon signals (7×CH₃, 9×CH₂, 14×CH and 6×C), 6 of them were in good accordance with the presence of a β –D-glucose moiety. Four olefinic carbons at δ 117.6 (C-1), 140.6 (C-10), 139.3 (C-9) and δ 126.6 (C-11) and four oxygen-bearing carbons at δ 79.5 (C-3), 74.9 (C-7), 75.5 (C-24), 81.9 (C-25) were

Two New 9, 10-seco-Cycloartanes from Sphaerophysa salsula

presented. However, the characteristic proton signals due to the three membered ring of 9, 19-cycloartane were not found. From the above data and literature $data^4$, this compound was determined to be a 9, 10-seco related derivative of sphaerophysone A³. In the HMQC spectrum of 1, it presented the correlated peaks between proton δ 5.27 (br.s, 1H, H-1) and carbon δ 117.6 (C-1), 5.36 (br. s, 1H, H-11) and δ 126.6 (C-11), and the proton at δ 2.75 and δ 3.02 (d, 1H, J=14.0, H-19) are correlated with the carbon δ 45.8 (C-19). In the HMBC spectra of 1, the protons at δ 2.75 and δ 3.02 (d, 1H, J=14.0, H-19) showed correlated with the carbons at δ 117.6 (C-1), 46.1 (C-5), 139.3 (C-9), 140.6 (C-10), 55.9 (C-8) and δ 126.6 (C-11). The proton δ 5.27 (br.s, 1H, H-1) has the long-range correlations with the carbons at δ 140.6 (C-10), 45.8 (C-19) and δ 46.1 (C-5). It also displayed that proton δ 5.36 (br. s, 1H, H-11) correlated with the carbons δ 45.8 (C-19), 55.9 (C-8) and δ 139.3 (C-9), However there is no HMBC correlations between proton δ 5.27 (br.s, 1H, H-1) and carbon δ 139.3 (C-9), proton δ 5.36 (br. s, 1H, H-11) and carbon δ 140.6 (C-10), which confirmed that the structure is a *seco*-cycloartane type triterpene. In the HMBC spectra of 1, the anomeric proton showed long-range correlation with C-25 (δ 81.9). So the C-25 was substituted by a glucosyl group. And in the NOESY spectra of 1, the cross peaks between proton δ 3.39 (dd, 1H, J=9.5, 3.0 Hz, H-3) and proton δ 1.66 (m, 1H, H-5), proton δ 3.80 (m, 1H, H-7) with δ 0.92 (s, 3H, H-28) were exhibited, so the configuration of 3, 7-OH are β -orientations. However, orientation of the hydroxyl group at the side chain is difficult to determine. On the basis of 2D NMR, the NMR data of the compound 1 were assigned.

Sphaerophyside SD (**2**, 2 mg) has the same molecular formula as **1**. In the ¹H NMR, it presented H-19 protons at δ 2.73 and δ 3.01 (d, each 1H, J=14.0 Hz), suggested it is a 9, 10-*seco*-cycloartane glucoside. The anomeric proton at δ 4.30 (d, 1H, J=8.0 Hz) has the correlation with carbon δ 85.6 (C-3) in HMBC spectrum. So the glycosic linkage is at C-3. The configuration of 3, 7-OH were determined by NOESY spectrum. The NMR data were also assigned by 2D NMR. (see **Table 1**.)

Acknowledgments

The authors are grateful to the support of Taiwan Shenrong Research Foundation.

References

- 1. Z. J. Ma, B. L. Hou, J. H. Wang, X. Li. Pharmazie, 2002, 57 (1), 75.
- 2. Z. J. Ma, X. Li, N. Li, J. H. Wang. Fitoterapia 2002, 73, 313.
- 3. Z. J. Ma, X. Li, Y. Lu, C. Wang, Q. T. Zheng. Chin. Chem. Lett., (in press).
- 4. S. Kadota, J. X. Li, K. Tanaka, T. Namba. *Tetrahedron* 1995, 51 (4), 1143.

Received 24 December, 2002

60